Search results for "Pseudomonas aeruginosa infection"
showing 3 items of 3 documents
Polyanion–tobramycin nanocomplexes into functional microparticles for the treatment of Pseudomonas aeruginosa infections in cystic fibrosis
2016
Aim: Efficacy of antibiotics in cystic fibrosis (CF) is compromised by the poor penetration through mucus barrier. This work proposes a new ‘nano-into-micro’ approach, used to obtain a combinatorial effect: achieve a sustained delivery of tobramycin and overcome mucus barrier. Methods: Mannitol microparticles (MPs) were loaded with a tobramycin polymeric nanocomplex and characterized in presence of CF artificial mucus. Results & discussion: MPs are able to alter the rheological properties of CF artificial mucus, enhancing drug penetration into it and allowing a prolonged drug release. MPs resulted to be effective in Pseudomonas aeruginosa infections if compared with free tobramycin. Co…
Nano into Micro Formulations of Tobramycin for the Treatment of Pseudomonas aeruginosa Infections in Cystic Fibrosis.
2017
Here, nano into micro formulations (NiMs) of tobramycin for the treatment of Pseudomonas aeruginosa airway infections in cystic fibrosis (CF) are described. NiMs were produced by spray drying a solution containing polymers or sugars and a nanometric polyanion–tobramcyin complex (PTC), able to achieve a prolonged antibiotic release. NiMs properties were compared to TOBIPodhaler(Novartis), the only one commercially available dry powder inhalatory formulation based on porous microparticles. Produced NiMs showed adequate characteristics for pulmonary administration, as spherical shape, micrometric size, and high cytocompatibility toward human bronchial epithelial cells. Contrarily to TOBIPodhal…
Nanometric ion pair complexes of tobramycin forming microparticles for the treatment of Pseudomonas aeruginosa infections in cystic fibrosis
2019
Abstract Sustained pulmonary delivery of tobramycin from microparticles composed of drug/polymer nanocomplexes offers several advantages against traditional delivery methods. Namely, in patients with cystic fibrosis, microparticle delivery can protect the tobramycin being delivered from strong mucoadhesive interactions, thus avoiding effects on its diffusion toward the infection site. Polymeric ion-pair complexes were obtained starting from two synthetic polyanions, through impregnation of their solid dissociated forms with tobramycin in aqueous solution. The structure of these polymeric systems was characterized, and their activities were examined against various biofilm-forming Pseudomona…